ethyl)propionanilide-d-tartrate, m.p. 194–197°, was 30.7 g. Three recrystallizations from ethanol resulted in a 71% yield of pure product, m.p. 204.5–205.5° and $[\alpha]_{D}^{25}$ +23.7 (2% in water).

Anal. Calcd. for $C_{21}H_{32}N_2O_7$: C, 59.4; H, 7.6; N, 6.6. Found: C, 59.2; H, 7.8; N, 6.6.

This product was converted to the hydrochloride by the procedure described above for the *l* isomer. The over-all yield of *d*-*N*-(1-methyl-2-piperidinoethyl)propionanilide hydrochloride, m.p. 202-203° and $[\alpha]_D^{25}$ +18.9 (2% in water) was 8.1 g. (35%).

Anal. Calcd. for C₁₇H₂₇ClN₂O: C, 65.7; H, 8.8; Cl, 11.4; N, 9.0. Found: C, 65.6; H, 8.8; Cl, 11.2; N, 9.4.

Acknowledgment. We are indebted to Mr. L. Brancone and associates for the microanalyses, to Dr. J. H. Clark and co-workers for the preparation of some of the intermediates, and to Dr. A. C. Osterberg and associates for the pharmacological data.

PEARL RIVER, N.Y.

[Contribution from the Organic Chemical Research Section, Lederle Laboratories Division, American Cyanamid Co.]

Synthetic Analgesics. III. Basic Anilides and Carbanilates Containing the Phenalkyl Moiety¹

WILLIAM B. WRIGHT, JR., HERBERT J. BRABANDER, AND ROBERT A. HARDY, JR.

Received May 5, 1960

A series of N-(*tert*-aminoalkyl)anilides and -carbanilates containing the phenalkyl moiety has been prepared. Some of these compounds show analgesic potency in the codeine to morphine range. N-[2-(Methylphenethylamino)propyl]propionanilide sulfate, diampromid, has been chosen for clinical trial in man.

N-(1-Methyl-2-piperidinoethyl)propionanilide hydrochloride (I), phenampromid, which may be considered a nitrogen analog of isomethadone, was reported in the previous papers of this series² to have analgesic activity similar to meperidine.

Other investigators³ have shown that replacement of the N-methyl group by a phenalkyl group in analgesics such as meperidine, racemorphan, and α -prodine often results in increased activity. We, therefore, were interested in determining whether increased potency could be obtained by introducing

(1) (a) Presented in part at the 135th Meeting of the American Chemical Society, Boston, Mass., April, 1959;
(b) W. B. Wright, Jr., R. A. Hardy, Jr., and H. J. Brabander, U. S. Patent 2,944,081, July, 1960.

(2) W. B. Wright, Jr., H. J. Brabander, and R. A. Hardy, Jr., J. Am. Chem. Soc., 81, 1518 (1959); J. Org. Chem., 26,476 (1961).

(3) (a) T. D. Perrine and N. B. Eddy, J. Org. Chem. 21, 125 (1956);
(b) E. L. May, J. Org. Chem. 21, 899 (1956);
(c) J. Weijlard, P. D. Orahovats, A. P. Sullivan, G. Purdue, F. D. Heath, and K. Pfister, J. Am. Chem. Soc., 78, 2342 (1956);
(d) B. Elpern, L. N. Gardner, and L. Grumbach, J. Am. Chem. Soc., 79, 1951 (1957);
(e) B. Elpern, W. Wetterau, P. Carabateas, and L. Grumbach, 133rd Meeting of the American Chemical Society, April, 1958, Abstracts of Papers, p. 11M., Abs. No. 19.

TABLE I Analgesic Activity

R	n	\mathbf{R}_1	${ m AD}_{50}{}^a$ Mg./Kg.
Н	1	H	8
m-CH ₃	1	H	2
$p ext{-} ext{CH}_{3}$	1	\mathbf{H}	3
p-Cl	1	H	6
p-F	1	\mathbf{H}	6
H	2	\mathbf{H}	4
m-CH ₃	2	н	14
p-NH ₂	2	н	16
H	2	m-CH ₃ O	15
\mathbf{H}	3	н	17
б		\mathbf{H}	4
Meperidine			11
Morphine			3

 $^a\,\rm AD_{50}$ = The subcutaneous dose which elevates the rat tail radiant heat response time by 100% in 50% of the animals. $^b\,N\$ [2-(Cinnamylmethylamino)propyl]propionanilide.

phenalkyl groups in our series of *N*-(*tert*-aminoalkyl)anilides and -carbonilates. Such compounds are represented by formula II.

One general procedure used for these compounds is that described in our previous paper.² This consisted of acylation of the appropriate alkylenediamines with an acid chloride or anhydride (Tables IV, V, VI). Conventional alkylation of an aniline with a *tert*-aminoalkyl halide gave the straight chain diamines⁴ (Tables III and V). Lith-

100	
4 X n	
100	

2-Amino- and 2-Bromopropionamides

	țen, % Found	6.2 5.3 5.3 5.3 10.5 10.6 10.6 9.0 8.7 9.4 9.4
	Nitroe Calcd.	6.1 5.5 5.5 5.5 5.5 5.5 9.9 9.9 9.0 9.5 9.5 9.5
	en, % Found	35.1 31.5 28.0 28.0 11.5 11.5
	Halog Calcd.	35.0 31.2 29.6 11.2 ds were
	gen, % Found	4.6 5.7 6.7 7.7 8.0 8.0 8.0 8.2 8.2 8.2 8.2 8.2
	Hydro, Calcd.	4.4 5.5 6.0 6.0 7.5 7.9 7.9 8.2 8.2 8.2 7 hese c
	on, % Found	47.3 51.6 54.0 76.0 76.8 76.6 67.5 67.5 772.0 772.0 76.8 76.8 76.8 76.8
	Carbo Caled.	47.4 51.6 53.4 53.4 76.1 76.1 76.6 76.6 76.6 76.6 77.0 77.0 77.0 77.0
	Formula	C ₉ H ₁ ,BrNO C ₁₁ H ₄ BrNO C ₁₂ H ₄ BrNO C ₁₂ H ₄₈ BrNO C ₁₃ H ₂₈ N ₂ O C ₁₃ H ₂₄ N ₂ O
c— ^R	$n_{ m D}^{25}$	1.557 1.557 1.575 1.568 1.564 1.564 1.564
R	B.P., Mm.	120-123(0.4) 140-145(0.5) 174-178(0.2) 184-190(0.3) 180-185(0.5) 195-198(0.5) 195-198(0.8)
	M.P.	98-101 ^a 90-92 92-93 72-74 65-67 65-67 m.p. 101-10
	Yield, $\%$	53 65 80 80 87 87 87 87 80 87 77 77
	\mathbb{R}_2	Anilino Benzylmethylamino Methylphenethylamino Benzylmethylamino Methylphenethylamino Anilino Anilino m-Chloroanilino m-Anisidino m-Anisidino g. Chem., 17, 1597 (1952)
	$\mathbf{R_{i}}$	J. Org
	Я	Br Br Br Anilino Anilino Anilino Benzylmethylamino Methylphenethylamino Methylphenethylamino Methylphenethylamino Ethylphenethylamino Ethylphenethylamino

WRIGHT, BRABANDER, AND HARDY

ium aluminum hydride reduction of the appropriate propionamide gave the desired branched chain diamines (Table III) of unequivocal structure.²

A second general procedure was also used, which allowed for the preparation of many end products containing a variety of phenalkyl groups from a common intermediate. Compound III was reductively debenzylated to IV in nearly quantitative yield and converted to V by reductive alkylation or by reaction with an aralkyl halide.

Pharmacological results indicated that introduction of the phenalkyl group in the basic moiety of the *N*-(*tert*-aminoalkyl)anilide series significantly increased analgesic activity in many cases. These compounds were tested by a sequential modification⁵ of the mouse hot plate method of Woolfe and Macdonald⁶ and Eddy *et al.*⁷ and the rat tail radiant heat procedure of D'Amour and Smith.⁸ *N*-[2-(Methylphenethylamino)propyl]propionanilide sulfate, diampromid, was found to approximate the potency of meperidine in mice and morphine in rats.⁹ Extensive pharmacological evaluation led to the selection of this compound for trial in man. Clinical results indicate that diampromid is a narcotic-type analgesic.

Structure-activity relationships in this series

(4) (a) F. Leonard and U. V. Solmssen, J. Am. Chem. Soc.,
70, 2064 (1948); (b) S. G. Fridman, Zhur. Obshchei Khim.,
23, 278 (1953); (c) M. A. Stahmann and A. C. Cope, J. Am.
Chem. Soc., 68, 2494 (1946); (d) M. W. Goldberg and S.
Teitel, U. S. Patent 2,746,992, May 22, 1956.

(5) A. C. Osterberg, J. D. Haynes, and C. E. Rauh, J. Pharmacol. Exptl. Therap., 122, 59A (1958).
(6) G. Woolfe and A. D. Macdonald, J. Pharmacol. Exptl.

(6) G. Woolfe and A. D. Macdonald, J. Pharmacol. Expl. Therap., 80, 300 (1944).

(7) N. B. Eddy, C. F. Touchberry, and J. E. Lieberman, J. Pharmacol. Exptl. Therap., 98, 121 (1950).

(8) F. E. D'Amour and D. L. Smith, J. Pharmacol. Exptl. Therap., 72, 74 (1941).

(9) A. C. Osterberg and C. E. Rauh, *The Pharmacologist*, 1 (No. 2), 78 (1959): Abstracts of Papers, Fall Meeting, *Am. Soc. Pharmacol. Exptl. Therap.*, Aug.-Sept., 1959, Coral Gables, Fla.

	Nitrogen, %	alcd. Found	0.1 10.3	9.0 8.9	9.1 9.4	0.9 10.3	9.6 9.6	1.0 11.0	$9.2 ext{ } 9.6$	0.4 10.5	9.3 9.5	9.4 9.4	9.9 10.3	9.9 10.1	9.9 10.2	9.5 9.6	9.9 10.1	aniline deriva- and N ² -methyl-
	ine, %	Found Ci	12.9 1	22.9	11.9	Ē	12.5	1	12.1	÷	11.9							loride with the opyl bromide
	Chlor	Calcd.	12.8	22.8	11.6		12.2		11.6		11.7							hydroch phenylpi M 1944
	gen, %	Found	7.8	6.4	7.9	8.1	8.1	8.9	8.5	9.4	7.8	8.9	8.8	9.5	9.5	9.7	9.6	yl chloride red from 3-
	Hydro	Calcd.	7.6	6.5	7.6	7.9	8.0	8.7	8.3	0.0	7.7	8.8	8.5	9.3	9.3	9.5	9.3	minoeth 7 Prepa
	on, %	Found	69.3	61.5	66.5	75.0	69.69	80.4	70.5	80.2	71.2	76.6	76.1	80.7	80.6	80.7	80.7	ylmethyla the amide
	Carbo	Calcd.	69.4	61.7	66.5	75.0	70.2	80.3	70.9	80.6	71.4	76.5	76.0	80.8	80.8	81.0	80.8	of 2-benz uction of
R –		$\operatorname{Formula}^{b}$	C ₁₆ H ₂₁ CIN2	C16H20Cl2N2	C ₁₇ H ₂₃ CIN ₂ O	C ₁₆ H ₂₀ N ₂ O	C ₁₇ H ₂₃ CIN ₂	$C_{17}H_{22}N_2$	C ₁₈ H ₂₆ CIN ₂	C ₁₈ H ₂₄ N ₂	C ₁₈ H ₂₃ CIN ₂	C ₁₉ H ₂₆ N ₂ O	C ₁₈ H ₂₄ N ₂ O	C ₁₀ H ₂₆ N ₂	C ₁₀ H ₂₆ N ₂	$C_{20}H_{28}N_2$	C19H26N2	ase. ^c Reaction on the section of
CH ₃ CH ₃	Hydrochloride,	M.P.	121-123	113-116	110-112		150-151		171-172									• Lithium alumir
		$n_{\rm D}^{26}$	1.575	1.581	1.574	1.595	1.566	1.590		1.565	1.572	1.567		1.559	1.559	1.555	1.556	eported, ot romic acid.
		B.P., mm.	164-167(1.8)	154 - 160(0.3)	186 - 194(1)	176 - 182(0.2)	140 - 144(0.4)	145 - 150(0.3)	145 - 150(0.4)	138 - 142(0.2)	175 - 180(0.3)	188 - 192(0.5)	205 - 216(0.2)	162 - 166(0.3)	158 - 164(0.2)	158-162(0.08)	158 - 162(0.3)	es are for salt if r ising 48% hydrob
	Yield, ^a	%	72°	64°	23°	514	84°	86°	86	80°	75°	72	54^d	75°	521	59°	75°	d analys analog, 1 1 lithium
		\mathbb{R}_2	H	m-Cl	m-OCH ₃	m-OH	Η	Н	Н	Н	m-Cl	m-OCH _a	m-OH	Η	Η	Н	Н	Formulas an the methoxy
	l	R	н	Η	Η	Η	CH,	H	CH,	Η	H	H	Ħ	Η	Η	Н	Η	I base. ^b olysis of 2-propa
	1	22 24	Η	Н	Η	H	H	CH	H	CH,	CH,	CH,	CH,	C3H,	CH,	CH	CH,	^a Distillec ive. ^a Hydr /1-nhenvl-1

TABLE III

DIAMINE INTERMEDIATES

 \mathbb{R}^2

FEBRUARY 1961

\mathbf{N}	
TABLE	

N-[2-(Phenalkylmethylamino)propyljanilides and -carbanilates (Methadone Analogs)

 $\mathbb{R}_{CH_2)_{n-N-CH-CH_2-N}} \overset{O}{\xrightarrow{}}_{CH_2} \mathbb{R}_1$

				Yield. ^a						Carb	on, %	Hydro	gen, %	Chlori	ne, %	Nitro	zen, %
u	R	R,	$\mathbf{R_2}$	%	B.P., Mm.	n_{D}^{2b}	Salt	M.P., Salt	$\operatorname{Formula}^{b}$	Calcd.	Found	Caled.	Found	Calcd.	Found	Caled.	Found
-	H	Н	C_2H_5	90¢	166 - 170(0.4)	1.548	HCI	$150-151^d$	C ₂₀ H ₂₇ CIN ₂ O	69.2	69.4	7.8	7.9	10.2	10.4	8.1	8.3
-	٥CI	Н	C_2H_5	54°	165 - 170(0.1)	1.557	HCI	136 - 138	C ₂₀ H ₂₆ Cl ₂ N ₂ O	63.0	63.3	6.9	7.0	18.6	18.3	7.3	7.3
-	D-d	Н	C_2H_5	72 ^e	183-188(0.1)	1.555	HCI	169-171	$C_{20}H_{26}Cl_2N_2O$	63.0	63.3	6.9	7.1	18.6	18.6	7.3	7.3
	o-F	Η	C_2H_5	74°	160 - 165(0.1)	1.541	HCI	146 - 148	C20H26CIFN2O	65.8	66.2	7.2	7.3	9.7	6.6	7.7	7.7
	ъ-F	Н	C_2H_5	43°	152 - 156(0.2)	1.538	HCI	161 - 163	C ₂₀ H ₂₆ CIFN ₂ O	65.8	65.5	7.2	7.4	9.7	9.4	7.7	7.6
٦	m-CH3	Н	C_2H_6	41°	170 - 176(0.2)		HCI	150 - 151	C ₂₁ H ₂₉ CIN ₂ O	60.9	70.1	8.1	7.9	9.8	10.0	7.8	7.8
-	p-CH ₃	Η	C_2H_5	67°	160 - 164(0.1)	1.546			$C_{21}H_{28}N_2O$	7.77	77.3	8.7	8.7			8.6	8.7
	p-OCH3	Н	C_2H_5	26^{e}	165 - 175(0.2)	1.549			$C_{21}H_{28}N_2O_2$	74.1	73.7	8.3	8.5			8.2	8.6
1	Ħ	Н	$0C_2H_5$	371	155 - 163(0.2)	1.540	HCI	125-127	C ₂₀ H ₂₇ CIN ₂ O ₂	66.2	66.3	7.5	7.8	9.8	0.9	7.7	7.9
2	H	Η	CH_{s}	81°	144 - 150(0.08)	1.549	HNO	142-143	C20H27N3O4	64.3	64.0	7.3	7.1			11.3	11.3
3	Н	Н	C_2H_6	83°	174 - 178(0.5)	1.547	H ₂ SO,	110-111	$C_{21}H_{30}N_2O_5S$	59.7	59.6	7.2	7.4			6.6	6.4
2	H	Н	$C_{3}H_{7}$	780	165 - 170(0.2)	1.540	H _s SO ₄	90 - 92	$C_{22}H_{32}N_2O_5S$	60.5	60.2	7.4	7.9			6.4	6.4
2	Η	Н	i-C ₃ H ₇	26°	148-155(0.08)	1.541	H ₂ SO4	158-159	C22H82N2O5S	60.5	60.6	7.4	7.6			6.4	6.4
04	Н	Н	C4H,	81°	156 - 162(0.08)	1.538	H_2SO_4	117-119	C23H34N2O5S	61.3	61.2	7.6	7.9			6.2	6.3
2	Н	m-Cl	C_2H_6	81°	180 - 185(0.2)	1.552	HCI	121-123	C ₂₁ H ₂₈ Cl ₂ N ₂ O	63.8	63.4	7.1	7.3	17.9	17.7	7.1	7.2
2	Η	m-OCH ₃	C_2H_5	80°	195 - 196(0.1)	1.547	HCI	$134 - 135^{d}$	C ₂₂ H ₃₁ CIN ₂ O ₂	67.6	67.4	8.0	8.1	9.1	8.9	7.2	7.3
3	Н	m-OCOC ₂ H ₅	C_3H_6	84°	200-205(0.1)				C ₂₄ H ₃₂ N ₂ O ₃	72.7	72.1	8.1	8.3			7.1	7.3
21	m-CH3	Н	C_2H_5	45^{e}	170 - 175(0.1)	1.543			C22H30N2O	78.1	78.0	8.9	9.2			8.2	8.2
2	p-NH2	Н	$C_{3}H_{5}$	10^{θ}	190-200(0.1)				$C_{21}H_{29}N_{3}O$	74.3	74.1	8.6	0.0			12.4	12.4
ŝ	Η	Н	C_2H_6	84°	165 - 170(0.3)	1.544			$C_{22}H_{30}N_2O$	78.1	77.8	8.9	9.2			8.3	8.3
4	H	Η	C_3H_6	63°	170-175(0.1)	1.538^{h}			C23H32N2O	78.4	78.1	9.2	9.3			7.9	7.9
Ч	Η	Н	C_2H_b	29¢,t	170 - 176(0.2)	1.564			$C_{22}H_{26}N_2O$	78.5	78.2	8.4	8.8			8.3	8.1
57	Η	Н	C_2H_6	79c	180 - 185(0.2)	1.541	H ₃ SO ₄	156 - 157	$C_{22}H_{32}N_2O_5S$	60.5	60.4	7.4	7.6			6.4	6.6
2 F	H	Н	C_2H_5	26c	170 - 175(0.1)	1.541			$C_{22}H_{30}N_2O$	78.1	77.8	8.9	0.0			8.3	8.5
8	Distilled	base. ^b Formu	ilas and ar	nalyses a	re for the salt if r	eported,	otherwis	e for the ba	se. ^c Reaction of t	the base	with the a	nhydride	e. ^d Recrys	stallized f	rom acete	one. ^e Rea	ction of
the	phenalky	rl halide with	N-[2-(met	thylamir	io)propyl]propior	anilide.	' Reacti	on of the a	nine with ethyl ch	loroforn	nate. ^o See	experime	ental sectio	on. ^h N-[2	2-(Cinnan	nylmethyl	amino)-
pro] phei	pyl]propi nethylam	ionanilide. ¹ I uino)butyl]pro	From 3-cl pionanilid	hloroproj e.	penylbenzene an	d N-[2-	(methyl	amino)prop	yl]propionanilide.	J N-[2	-(Ethylphe	enethyla	mino)prop	yl]propic	manilide.	k N-[2-(Methyl-

WRIGHT, BRABANDER, AND HARDY

Λ	DERIVATIVES
TABLE	1,3-Propanediamine

ж-	N- ^z H)
	V-CH ₂ -CH ₂ -CH	CH3
	$\bigcirc -(CH_2)_n - N$	

	4				Hydrochloride,		Carbo	n, %	Hydrog	en, %	Chlori	ne, %	Nitrog	en, %
*	R	Yield, ^a %	B.P., mm.	n ² 6	M.P.	$\operatorname{Formula}^{b}$	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
-	н	65	160-165(0.5)	1.569		CHN.	80.3	0.08	7 8 .	5 7			11	
-	Duning	10					.				1		0.11	H. 11
.,		2	100-109(0.9)		100-152	C20H2CIN2O	69.2	69.1	7.8	8.0	10.2	10.2	8.1	8.0
-	Carbethoxy	51	150 - 155(0.1)	1.533	124-126	C ₂₀ H ₂₇ CIN ₂ O ₂	66.2	65.9	7.5	7.7	9.8	10.2	7.7	7.7
2	Н	11	175-180(0.8)	1.564		C _{is} H _s N,	80.5	80.0	0.6	9.2	•		10.4	10.4
2	Propionyl	80	200-205(1.0)	1.545	99-101	C ₂₁ H ₂₅ CIN ₂ O	69.9	69.5	8.1	(m) (m)	9.8	10 2	0	7.6
2	Carbethoxy	52	170-175(0.2)	1.538		C21H23N2O2	74.1	73.5	8.3	8.4	2		8.2	8.7
ų	Disting to 1													

^{α} Distilled base. ^b Formulas and analyses are for salt if reported, otherwise for base.

TABLE VI. MISCELLANEOUS ANILIDES^a

						Hudacablaide		Carho	n 07.	Hudrow	20 ma	Chlorid	20 au	Nituon	10
a R	$\mathbf{R}_{\mathbf{i}}$	\mathbb{R}_2	Yield, ^b %	B.P., Mm.	n_{D}^{25}	M.P.	Formula ^c	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
I H	H	CH,	96	146-150(0.1)	1.556	203-205	C. H. CIN.O	67.8	67.5	7 3	7 7			0	00
I H	Н	C ₃ H ₆	92	150 - 155(0.3)	1.551	179-181	C"H"CIN,O	68.6	68.2	7.6	7.7	10.7	11 0	0 00 9 4	0 0 0
I H	Н	C ₃ H,	74	166 - 170(0.4)		$117 - 118^{d}$	C ₂₀ H ₂₇ CIN ₂ O	69.2	68.8	7.8	8.3	10.2	10.1		,
I H	Н	i-C ₅ H,	72	140 - 144(0.3)		200 - 202	C20H2CIN2O	69.2	69.6	7.8	7.6	10.2	10.2	- C	-
H	m-Cl	C_3H_6	74	165 - 170(0.1)	1.558	166 - 168	C19HarCl2N2O	62.1	61.8	6.6	6.6	19.3	19.2	7.7	7.5
1 H	m -OCH $_3$	$C_{2}H_{5}$	80	182 - 186(0.4)	1.553	123-125	C20HzCIN.02	66.2	66.2	7.5	7.6	8 6	10.0	7 7	8.2
I H	m-OH	C ₃ H,	241	190-200(0.08)	1.572		C.,H.,N.,O.	73.0	73.3	7.7	6.7)) 	0 6	0.0
I CH,	Н	$C_{3}H_{5}$	86	160 - 162(0.4)	1.546	163 - 164	C20H27CIN2O	69.2	69.0	7.8	8.2	10.2	10.4		6.7
2 CH	н	C_2H_6	84	155 - 160(0.2)		125-127	C ₂₁ H ₂₉ CIN ₂ O	69.9	69.9	8.1	8.3	9.8	10.0	2.8	2.8
2 CH	Н	C ₆ H ₇	91	165 - 170(0.2)	1.537	$103 - 105^{0}$	C22H31N3O	65.8	65.8	7.8	8.0	1) - -	10.5	10.2
 Prepa tilled base. 	ed by the r ^d Recrystal	eaction of llized from	the diamine tethyl acetat	with the anhydr e. Recrystallize	ride, unle d from ac	ss otherwise note etone. ^J Reaction	d. ^b Distilled base of the diamine wi	e. ^e Formu ith propioi	ilas and a nyl chlorid	nalyses a le. ^o Nitra	re for the ate.	salt if re	ported, oth	lerwise for	the dis-

are generally similar to those described in our previous paper.² However, the greatest activity in the phenalkyl series was found when the alkylene chain between the two nitrogens was analogous to that of methadone. A variety of phenalkyl groups gave active compounds with a considerable range of potency as illustrated in Table I.

EXPERIMENTAL

The salts, 2-bromopropionamides (Table II), 2-aminopropionamides (Table II), alkylenediamines (Tables III and V), carbanilates (Tables IV and V), and some of the anilides (Tables IV-VI) were prepared by the methods described in the previous paper of this series.⁴ New procedures are described below.

N-[2-(Methylamino)propionanilide. A mixture of 31 g. (0.1 mole) of N-[2-(benzylmethylamino)propyl]propionanilide, 25 ml. of 4N hydrochloric acid, 175 ml. of ethanol, and 2 g. of 10% palladium-on-carbon catalyst was shaken in a Parr hydrogenator under about 3 atm. of hydrogen pressure until the theoretical amount of hydrogen was absorbed. The catalyst was filtered off and the filtrate was concentrated to a sirup and treated with aqueous sodium hydroxide. The product was extracted into ether and distilled. The yield of N-[2-(methylamino)propyl]propionanilide, b.p. 112-116° (0.2 mm.) and n_D^{25} 1.521, was 71%.

Anal. Calcd. for $C_{11}H_{20}N_2O$: C, 70.9; H, 9.1; N, 12.7. Found: C, 70.5; H, 9.3; N, 13.1.

N-[2-(Phenalkylmethylamino)propyl]propionanilides. A mixture of 0.025 mole of the appropriate phenalkyl halide, 0.05 mole of N-[2-(methylamino)propyl]propionanilide, and 40 ml. of ethanol was heated on the steam bath overnight, concentrated to remove the solvent, and diluted with 10 ml. of water. The reaction mixture was extracted with ether and the combined ether extracts were dried over magnesium sulfate and distilled.

N-[2-(p-Aminophenethylmethylamino)propyl]propionanilide. A mixture of 23.0 g. (0.1 mole) of p-nitrophenethyl bromide, 18.0 g. (0.11 mole) of N²-methyl-N¹-phenyl-1,2propanediamine, 150 ml. of toluene, and 21.2 g. of sodium carbonate was heated at reflux for 48 hr. and then cooled. Enough water was added to dissolve the solids and the toluene layer was separated. The aqueous layer was extracted with ether. The organic layers were combined, dried over magnesium sulfate, and concentrated to a syrup. Propionic anhydride (50 ml.) was added and the reaction mixture was heated on the steam bath for 3 hr. and then concentrated to remove the propionic acid and excess propionic anhydride. A solution of 10 ml. of concd. hydrochloric acid and 100 ml. of water was added and the mixture was extracted with ether to remove non-basic products. The aqueous layer was treated with 30 ml. of 5N sodium hydroxide and extracted with ether to remove the crude N-[2 - (methyl - p - nitrophenethylamino)propyl]propionanilide (9.8 g.). A mixture of the above crude intermediate with 100 ml. of ethanol, 5 ml. of water, 5 ml. of concd. hydrochloric acid, and 1 g. of palladium-on-carbon catalyst was reduced in the Parr hydrogenator until 4.7 lb. of hydrogen was absorbed. The catalyst was filtered and the solvent was evaporated. The residue was made alkaline with dilute sodium hydroxide and extracted with ether. The ether layer was concentrated and distilled. N-[2-p-Aminophenethylmethylamino)propyl]propionanilide was collected at 190-200° (0.1 mm.).

4-Phenylbutyryl chloride. A solution of 16.4 g. (0.1 mole) of 4-phenylbutyric acid in 100 ml. of cold chloroform was slowly added to a cooled solution of 30 ml. of thionyl chloride in 100 ml. of chloroform. The reaction mixture was refluxed for 90 min. and distilled. The yield of 4-phenylbutyryl chloride, b.p. 80-85° (0.2 mm.), was 8.6 g. (47%). This compound was not analyzed.

 N^{*} -Methyl- N^{1} -phenyl-1,2-propanediamine. A mixture of 12.7 g. (0.05 mole) of N^{*} -benzyl- N^{*} -methyl- N^{1} -phenyl-1,2propanediamine, 50 ml. of 1N hydrochloric acid, 50 ml. of ethanol, and 1 g. of 10% palladium-on-carbon catalyst was shaken in a Parr hydrogenator under about 3 atm. of hydrogen pressure until the theoretical amount of hydrogen was absorbed. The catalyst was filtered off and the filtrate was concentrated. The residue was triturated with ether until crystallization occurred and the product was filtered. The yield of N^{2} -methyl- N^{1} -phenyl-1,2-propanediamine, hydrochloride, m.p. 96-99°, was 9.3 g. (93%). Recrystallization from ethanol by the addition of ether raised the melting point to 100-102°.

Anal. Calcd. for $C_{10}H_{17}$, ClN_2 : C, 59.8; H, 8.5; Cl, 17.7; N, 14.0. Found: C, 59.7; H, 8.9; Cl, 17.7; N, 13.9.

The base was obtained by treating the hydrochloride with aqueous alkali, extracting the product with ether, and distilling, b.p. 90-96° (0.1 mm.) and n_{2}^{25} 1.547.

N-(2-Anilino-1-methylethyl)-N-methyl-4-phenylbutyramide.A solution of 8.6 g. (0.05 mole) of 4-phenylbutyryl chloride in ether was added to a cooled solution of 16.4 g. (0.1 mole) of N^2 -methyl- N^2 -phenyl-1,2-propanediamine in 100 ml. of ether. The reaction mixture was refluxed for 2 hr. and then cooled overnight. The salt was filtered and washed with ether. The organic layers were combined and shaken with 50 ml. of 1N sodium hydroxide. The layers were separated and the aqueous layer was extracted with ether. The organic layers were combined and distilled. N-(2-Anilino-1-methylethyl)-N-methyl-4-phenylbutyramide, b.p. 195-200° (0.4mm.), was obtained in 60% yield.

Anal. Calcd. for $C_{20}H_{20}N_2O$: C, 77.4; H, 8.4; N, 9.0. Found: C, 77.1; H, 8.6; N, 9.4.

Acknowledgment. We are indebted to Mr. L. Brancone and associates for the microanalyses, to Dr. J. H. Clark and co-workers for the preparation of some of the intermediates, and to Dr. A. C. Osterberg and co-workers for the pharmacological data.

PEARL RIVER, N. Y.